Menofia University Faculty of Engineering Shebien El-kom Electrical Engineering Department. First semester Examination, 2014-2015 Date of Exam : 15 / 1 / 2015

,

Subject: Eng. Mathematics (4) Code: BES 311 Year : Third 3rd Time Allowed : 3 hrs Total Marks: 70 Marks

Question 3 (15 marks)										
(A) Determine the value of the function $f(x)$ at $x = 1.5$ using the direct method										
interpolation using first and second order polynomial.										
	x	0	1	2	3					
	f(x)	1	6	25	55					
			12			J	(5 Marks)			
(B) Find the cube root of 12 using Newton-Raphson method, take $x_o = 3$.										
(5 Marks										
(C) Prove that the normal equations to the curve $y = ax + b$ using										
least squares method are $\sum y = a \sum x + nb$ and $\sum xy = a \sum x^2 + b \sum x$. (5 Marks)										
Question 4 (15 marks)										
(A) If $x = 4 + 0.01$, $y = -3 + 0.05$, $t = 5 + 0.02$ Find the maximum possible										
$(A) II \chi = \mp 1 0.01, y = -3 \pm 0.00, t = 0 \pm 0.02$ (3 Mat										
error in z where $z = (x^2 + y^2)e^{-x}$										
(B) Use Euler's and Rung-Kutta 4 th order method to solve the differential equation										
$\frac{dy}{dt} = 2x$ to obtain the value of y at $x = 0.5$; knowing that $y(0) = 1$										
dx							(7 Marks)			
(take $h=0.5$ in both methods).							(7 Warks)			
() a lot of following equation (Sturm- Louville boundary value problem).										
(C) Solve the following equation (Sturm- Louvine boundary value production), $d^2 y$										
$\left \frac{dy}{dx^2} + \lambda y = 0\right $, where $0 < x < l$, with boundary conditions $y(0) = y(l) = 0$ and										
show that the solution is orthogonal set of function. [note, do it for $\lambda \ge 0$ only)										
							(5 Marks)			

		T	his exam measur	es the fol	lowing II	0s				
Question Number	O1-a	Q2-d	Q2-b	Q4-a	Q4-b	Q2-c	Q1-b	Q2-a	Q3-b	
Quescion	04-b	d2-i	Q3-b	Q3-a	Q3-c		Q3-d	Q4-c		
Skills Ki	Know	Knowledge &understanding skills			Intellectual Skills			Professional Skills		

With my best wishes Associate Prof. Dr. Islam M. Eldesoky

•